
Thesis Proposal: Distribution-based cluster scheduling

Jun Woo Park
junwoop@cs.cmu.edu

1 Introduction
Modern computing clusters support a mixture of diverse activities, ranging from customer-facing
internet services, software development and test, scientific research, and exploratory data analyt-
ics [1, 16]. The role of the cluster schedulers is to map these tasks to the heterogeneous resources
available in the cluster. They face a daunting task of efficiently matching the pending job according
to their scheduling preferences (in terms of the resource and deadlines) while minimizing the
completion latency and maximizing the cluster efficiency.

Many recent schedulers exploit knowledge of pending jobs’ runtimes and resource usages as a
powerful building block [5, 11, 24]. Using estimates of runtime and resource usage, a scheduler can
pack jobs aggressively into its resource plan [5, 11, 24, 26], such as allowing a latency sensitive
job to start before a high-priority batch job as long as the batch job will meet its deadline. The
knowledge enables the scheduler to consider whether it is better to wait for a job’s preferred
resources to be freed or to start the job right away on sub-optimal resources [3, 24]. Knowledge
of job runtime and resource usage leads to more robust scheduling decisions than using simple
scheduling algorithms that cannot leverage the information.

In most cases, runtime estimates come from the observation of similar jobs (e.g., from the
same user or past instances from the same job periodic job script) ran in the past. A point runtime
estimate (e.g., mean or median) is derived from the relevant subset of the history and used by the
scheduler. If the estimates are reasonably accurate, a scheduler that uses them usually outperforms
other approaches. Previous research [24] suggests that these schedulers are robust to a reasonable
degree of error (e.g., up to 50%).

However, analyses of workloads from real clusters show that the actual estimate errors span much
larger ranges than the previously explored. Applying a state-of-the-art ML-based predictor [23]
to three real-world traces shows good estimates in general (77%-92% are within a factor of two
of the actual runtime and most much closer), but a significant percentage (8%-23%) of estimates
are not within that range, and some are off by more than an order of magnitude [15]. Even very
effective predictors have inaccuracy and outlier because there is significant inherent variability in
multi-purpose cluster workloads.

The impact of inaccurate point estimates on scheduler performance is significant. Testing with
real estimate profiles reveals that a scheduler relying on such estimates performs much worse with
real estimate error profiles as compared to having perfect estimates. The point-estimate based

1

scheduler makes less informed decisions and struggles to handle difficult-to-estimate runtimes [15].
It is often too optimistic and starts under-estimated jobs later than it should, and it is often too
conservative and neglects to schedule over-estimated jobs that are predicted to not finish on time,
even if the cluster resources are available. Knowing only the point estimate, e.g. an average of a job
runtime, the scheduler cannot reason about the outcomes that may be significantly different from
the average.

Instead, our work proposes and evaluates a scheduler that can leverage full distributions (e.g.,
the histogram of observed runtimes) rather than single point estimates. A distribution provides much
more information (e.g., variance, possible multi-modal behaviors, etc.) and allows the scheduler
to make more robust decisions. By considering the range of possible runtimes for a job, and their
likelihoods, the scheduler can explicitly consider various potential outcomes from each possible
scheduling option and select an option based on optimizing the expected outcome.

2 Thesis Statement
Schedulers that rely on information about job runtimes and resource usages can more ro-
bustly address imperfect predictions by looking at likelihoods of possible outcomes rather
than single point expected outcomes.

The dissertation will provide the following evidence to support the thesis statement.

1. Through characterization of real workloads from three different environment (an internet
services provider, a hedgefund, and a national laboratory), we motivate the problem and
demonstrate that there exists inherent variability in the job runtimes and resource usage that
cannot be captured by single point estimates.

2. We demonstrate that a scheduler, called 3Sigma, that looks at runtime distributions instead of
a point runtime estimate, can much more robustly address imperfect runtime predictions. We
describe the design and implementation of 3Sigma, and evaluate it experimentally, to confirm
that its approach is viable in practice.

3. We demonstrate that a runtime distribution of a job can be estimated from the history of jobs
run in the past and show that estimated distributions are effective for the workloads studied.

4. We will build a scheduler that looks at both runtime and resource usage distributions instead
of point estimate for each, to demonstrate that such a scheduler can much more robustly
address imperfect predictions and evaluate it experimentally to confirm that its approach is
viable in practice.

5. We will demonstrate that a distribution of the resource usage of a job can be estimated from
the history of jobs run in the past and show that estimated distributions are effective for the
workloads studied.

2

3 Background and Motivation
Cluster consolidation in modern datacenters forces cluster schedulers to handle a diverse mix
of workload types, resource capabilities, and user concerns [16, 19, 26]. One result has been a
resurgence in cluster scheduling research.

3.1 Schedulers relying on information
Accurate job runtime information can be exploited to significant benefit in at least three ways at
schedule-time.

1) Cluster workloads are increasingly a mixture of business-critical production jobs and best-
effort engineering/analysis jobs. The production jobs, often submitted by automated systems [10,
21], tend to be resource-heavy and to have strict completion deadlines [5, 11]. The best-effort
jobs, such as exploratory data analytics and software development/debugging, while lower priority,
are often latency-sensitive. Given runtime estimates, schedulers can more effectively pack jobs,
simultaneously increasing SLO attainment for production jobs and reducing average latency for
best-effort jobs [5, 11, 24].

2) Datacenter resources are increasingly heterogeneous, and some jobs behave differently (e.g.,
complete faster) depending upon which machine(s) they are assigned to. Maximizing cluster
effectiveness in the presence of jobs with such considerations can be more effective when job
runtimes are known [3, 24, 30].

3) Many parallel computations can only run when all tasks comprising them are initiated
and executed simultaneously (Gang-scheduling) [13, 14]. Maximizing resource utilization while
arranging for such bulk resource assignments is easier when job runtimes are known.

Thus, many recent systems [5, 7, 8, 11, 24] make use of job runtime estimates provided by
users or predicted from previous runs of similar jobs. Such systems assume that the predictions are
accurate.

Mis-predicted runtimes can lead to sub-optimal scheduling. For example, an under-estimated
runtime may result in a job being started too late to finish by its deadline. Job runtime over-estimates
can lead to assuming a job can’t be completed by its deadline or to unnecessary lockout of best-effort
job. When a packing algorithm makes decisions based on inaccurate job “shapes”, cluster efficiency
can decrease.

Therefore, the systems may face severe performance penalties if a significant percentage of
runtime estimates are outside a relatively small error range.

3.2 Cluster Workloads
Analysis of job runtime predictability in production environments reveals that consistently accurate
predictions should not be expected. Specifically, this section discusses observations from our
analysis of job traces from three environments: (1) analysts at a quantitative HedgeFund running a
collection of exploratory and production financial analytics jobs on two computing clusters in 2016;
(2) scientists at Los Alamos National Laboratory running data analysis, smaller-scale simulation,
and development/test jobs on the Mustang capacity cluster between 2011 and 2016; (3) Google:

3

10−1 101 103 105

LogRuntime (seconds)
0.00

0.25

0.50

0.75

1.00
Fr

ac
tio

n
of

 Jo
bs

Google
HedgeFund
Mustang

(a) Runtime CDF

10−2 10−1 100 101 102

Coefficient Of Variation
0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 Jo

bs

Google
HedgeFund
Mustang

(b) CoV - User Id

10−2 10−1 100 101 102

Coefficient Of Variation
0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 Jo

bs

Google
HedgeFund
Mustang

(c) CoV - Resources Re-
quested

-100 -75 -50 -25 0 25 50 75 tail
Estimate Error(%)

0

10

20

30

40

Fr
ac

tio
n

of
 Jo

bs
(%

)

Google
HedgeFund
Mustang

(d) Estimate Error

Figure 1: Analyses of cluster workloads from three different environments: (a) Distribution of job runtimes
(b) Distribution of Coefficient of Variation for each subset grouped by user id (c) Distribution of Coefficient
of Variation for each subset grouped by amount of resources requested (d) Histogram of Estimate Errors
comparing runtime estimates from the state-of-the-art JVuPredict predictor and actual job runtimes. Estimate
Error values computed by estimate−actual

actual ×100. Each datapoint is a bucket representing values within 5% of the
nearest decile. The “tail” datapoint includes all estimate errors > 95%. Cluster:SC. Workload:Google E2E,
DFT E2E, MUSTANG E2E
the Google cluster trace[17] released in 2011 that has been used extensively in the literature. We
observe the following:

First, job runtimes are heavy-tailed (longest jobs are much longer than others), suggesting that
at least a degree of un-predictability should be expected. Heavy tails can be seen in the distribution
of runtimes for each workload (Fig. 1(a)).

Second, job runtimes within related subsets of jobs exhibit high variability. We illustrate this
with distributions of the Coefficient of Variation (CoV; ratio of standard deviation to mean), within
each subset clustered by a meaningful feature, such as user id (Fig. 1(b)) or quantity of resources
requested (Fig. 1(c)). CoV values larger than one (the CoV of an exponential distribution) is
typically considered high variability. Large percentages of subsets in each of the workloads have
high variability, with more occurring in the HedgeFund and Mustang workloads than in the Google
workload.

Third, we evaluate the quality of the estimates from a state-of-the-art predictor and confirm
that a significant percentage of estimates are off by factor of two or more. For this evaluation, we
generated a runtime estimate for each job and compared with the actual observed runtime in the
trace. We use JVuPredict, the runtime predictor module from the recent JamaisVu [23] project to
generate runtime estimates. JVuPredict produces an estimate for each job by categorizing jobs
(historical and new) using common attributes, such as submitting user or resources requested, and
choosing the estimate from the category that has produced the best estimates in the past. Smith et
al. [20] describe a similar scheme and its effectiveness for parallel computations.

Fig. 1(d) is the histogram of percent estimate error. For all workloads, most job runtimes are
estimated reasonably (e.g., ±25% error), but few are perfect. Worse, in each workload, a substantial
fraction of jobs are over- or under-estimated by a large margin, well outside the range of errors
considered in previous works [8, 24]. Even for the Mustang workload, which has large proportion of
jobs with very accurate (±5% error) estimates, at least 23% jobs have estimate error larger than 95%
and substantial amount of jobs have estimate error less than -55%. The HedgeFund trace has the
fewest jobs with very accurate estimates and many jobs in both tails of the distribution. The Google
cluster trace has fewer jobs in the tails of the distribution, but still has 8% of jobs mis-estimated by

4

a factor of two or more.
Overall, we conclude that multi-purpose cluster workloads exhibit enough variability that even

very effective predictors will have more and larger mis-estimates than has been assumed in previous
research on schedulers that use information about job runtimes.

3.3 Mis-estimate mitigation strategies
The scheduling research community has explored techniques to mitigate the effects of job runtime
mis-estimates, which can significantly hamper a scheduler’s performance.

Some environments (e.g. [11, 27]) use conservative over-provisioning to tolerate mis-estimates
by providing the scheduler more flexibility. Naturally, this results in lower cluster utilization, but
does reduce problems. Morpheus [11] re-assigns resources to jobs that require more resources at
runtime. Not all applications are designed to be elastic, though, and some cannot make use of
additional resources.

Preemption can be applied to address some issues arising from mis-estimates, like it is used in
many systems to re-assign resources to new high-priority jobs, either by killing (e.g., in container-
based clusters [27]) or migrating (e.g., in VM-based systems [29]) jobs.

Various other heuristics have been used to mitigate the effects of mis-estimates. [22] addresses
mis-estimations of runtimes for HPC workloads by exponentially increasing under-estimated
runtimes and then reconsidering scheduling decisions. Other systems [4, 12] use the full runtime
distribution to compare the expected benefits of scheduling jobs. The “stochastic scheduler” [18]
uses a conservative runtime estimate by padding the observed mean by one or more standard
deviations. Such heuristics help (3Sigma borrows the first two), but do not eliminate the problem.

3.4 A case for distribution-based scheduling
Are estimates of job runtime distributions more valuable than point estimates (e.g., estimates of the
average job runtime) for cluster scheduling?

One’s intuition may be to say ”yes,” if for no other reason than that the distribution provides
strictly more information to the scheduler than the point estimate. However, a simple thought
experiment might deepen our confidence in this response. Imagine a very simple case: two jobs
arrive to be scheduled on the cluster, and the resources available are such that only one job may be
scheduled at a time. Further, one job is an SLO job with a deadline 15 minutes into the future and
the other is a best-effort (BE) job. The objective of the scheduler is to never miss the deadline of a
SLO job, while also minimizing the latency of BE jobs. The key question is then: which job should
be run first?

To answer that question, the scheduler naturally needs more information. Let’s start by assuming
a point-estimate based scheduler. In our example, imagine that the average runtime of jobs like
each of these is known to be 5 minutes. Because the deadline window of 15 minutes is 50% longer
the sum of the two point estimates (10 minutes), one might assume that scheduling the BE job
first would be relatively safe, which would allow the BE job to start early while still respecting the
deadline of the SLO job.

5

Consider, instead, a distribution-based scheduler, and let’s imagine two cases: A and B. In case
A, the runtime distribution of each job (SLO and BE) is uniform over the interval 0 to 10 minutes.
The average runtime is still 5 minutes, but the scheduler is able to calculate that the probability
of the SLO job missing its deadline would be 12.5% if the BE job were scheduled first. Hence,
scheduling the SLO job first may be desirable. For case B, in contrast, imagine that the distributions
are uniform over the interval 2.5 to 7.5 minutes. Again, the average runtime is 5 minutes, but
now the scheduler may safely schedule the BE job first, because even if both jobs execute with
worst-case runtimes, the SLO job will finish in the allotted 15 minute window.

The key observation is that the distributions enable the scheduler to make better-informed
decisions; knowing just the average job runtime is not nearly as valuable as knowing whether jobs
are drawn from distribution A or B. Two caveats should be mentioned here. First, we implied in
this discussion that the SLO deadline is strict; in some environments, this may not be true, and
some weighting between BE job start time and SLO miss rate is desirable. Second, the discussion
assumed that the distribution supplied to the scheduler is accurate. In practice, the distribution will
have to be estimated in some way—probably from historical job runtime data—and may differ from
observed behavior. We address both of these topics later in the paper.

4 Distribution-based Scheduling
In this section, we describe the mechanisms that enable schedulers to use the full runtime distribution,
as opposed to point estimates. Any scheduler wanting to take advantage of runtime information can
use the following generic scheduling algorithm. The scheduler first generates all possible placement
options (resource type, start time), each of which has an associated utility. The scheduler chooses
to run the set of jobs which both maximize overall sum of utility and fit within the available
resources.

Using point runtime estimates, we can find the best schedule using basic optimization techniques
(e.g. MILP). However, with runtime distributions, we have a much larger state-space to consider.
For each running job, there are many possible outcomes. Naively considering all scenarios easily
makes this problem intractable. Instead of considering each option, we use the expected utility per
job and expected resource consumption over time. This section describes how both of these values
are calculated.

4.1 Valuation of scheduling options
For each job, there is a set of possible placement options. The placement of the job dictates the
job’s final completion time, and consequently, it’s usefulness or utility. A scheduler needs to place
jobs in a way that maximizes overall utility. This section describes how to associate job placement
options with the utility of the job.

Utility. To make informed placement decisions, a scheduler must quantify its options relative to
the success metric the job cares about. We use utility functions to represent a mapping from the
domain of possible job placement options and completion times to the potential utility of the job.
We assume that a cluster administrator or an expert user will be able to define the utility function on

6

U
til

ity

Completion time

U

deadline

30

(a) Job’s Utility Function

P
D
F

Runtime 2010

(b) Estimated PDF of Run-
time

E
xp

ec
te

d
U

til
ity

Start time

E[U]

2010

(c) Expected Utility Func-
tion

U
til

ity

Completion time

U

deadline

30

(d) Job’s Utility Func-
tion with Overestimate
Handling

Figure 2: Example curves for estimating utility for a given job. Each job is associated with a utility function
(a) describing its value as a function of completion time. 3σPredict produces a PDF (b) describing potential
runtimes for the job. 3σSched combines them to compute expected utility (c) for the job as a function
of its start time. [Note the different x-axes for (a), (b), and (c).] As described in §5.2, the overestimate
handling technique involves modifying the utility function (a) associated with the job with an extended
version illustrated in (d).

a job-by-job basis. However, in this work, we model the utility of SLO and latency sensitive jobs
separately. The utility curve used for SLO jobs is shown in Fig. 2(a). This curve models a job with
constant utility if completed within the deadline, and zero utility if completed after the deadline. On
the other hand, we represent latency sensitive jobs as having a linearly decreasing function over
time to declare preference to complete faster.

Expected utility. For each placement option (resource type, start time), a scheduler computes
the expected utility of a job using the runtime distribution. The expected utility is calculated as the
sum of utilities for each runtime t, weighted by the probability that the job runs for t:

E[U(startTime)] =
∫ max(runtime)

0
U(startTime+ t)PDF(t)dt (1)

where U(t) is utility function for placement in terms of completion time, and PDF is the probability
density function for the job runtime. Fig. 2 provides a simple example.

4.2 Expected resource consumption
To calculate the set of available resources over time, we need to estimate the resource usage of cur-
rently running jobs over time. The use of point estimates for runtimes makes an implicit assumption
that resource consumption is deterministic. In contrast, using full distributions acknowledges that
resource consumption is, in fact, probabilistic for jobs with uncertain duration. Thus, we calculate
the expected resource consumption, similarly to expected utility (§4.1).

The expected resource consumption of a job at time-slice t is dependent on the probability that
the job still uses those resources at (i.e., hasn’t completed by) time t. Given PDF(t)—the probability
density function of a job’s runtime, CDF(t) captures the probability with which the job will complete
in at most t time units. The inverse CDF, or 1−CDF(t) then captures the probability with which
the job will complete in at least t time units, which is also the probability the job still uses the
resources at time t. Thus, expected resource consumption at time t equals to the job’s resource
demand multiplied by 1−CDF(t).

For running jobs, 3σSched updates the runtime distribution, as it has additional informa-
tion, namely the fact that the job has been running for some elapsed time. This enables us to

7

Time

Re
so

ur
ce

s

Cluster
Manager

3σSched3σPredict

Fe
at

ur
e h

ist
or

y
Ex

pe
rt

se
lec

to
r

John SortV Scheduling Option Generator

Optimization Compiler

Optimization Solver

4. Measured runtime
1. Job submission 2. Job submission + distribution

3. Job placement
Figure 3: End-to-end system integration.

dynamically compute a conditional probability density function for the job’s expected runtime
P(t|t ≥ elapsed time). This probability update simply renormalizes the original CDForiginal(t) and
computes the updated probability distribution as follows:

1−CDFupdated(t) =
1−CDForiginal(t)

1−CDForiginal(elapsed time)
(2)

The amount of available resources in the cluster at time t is then computed by subtracting the
aggregate expected resource consumption at time t from the full cluster capacity.

5 3Sigma: a runtime distribution based scheduler
This section describes the architecture of 3Sigma (Fig. 3). 3Sigma replaces the scheduling com-
ponent of a cluster manager (e.g. YARN). The cluster manager remains responsible for job and
resource life-cycle management.

Job requests are received asynchronously by 3Sigma from the cluster manager (Step 1 of Fig. 3).
As is typical for such systems, the specification of the request includes a number of attributes, such
as (1) the name of the job to be run, (2) the type of job to be run (e.g. MapReduce), (3) the user
submitting the job, and (4) a specification of the resources requested.

The role of the predictor component, 3σPredict, is to provide the core scheduler with a probabil-
ity distribution of the execution time of the submitted job. 3σPredict (§5.1) does this by maintaining
a history of previously executed jobs, identifying a set of jobs that, based on their attributes, are
similar to the current job and deriving the runtime distribution the selected jobs’ historical runtimes
(Step 2 of Fig. 3).

Given a distribution of expected job runtimes and request specifications, the core scheduler,
3σSched decides which jobs to place on which resources and when. The scheduler evaluates the
expected utility of each option (§4.1) and the expected resource consumption and availability over
the scheduling horizon (§4.2). Valuations and computed resource capacity are then compiled into an
optimization problem (§5.3), which is solved by an external solver. 3σSched translates the solution
into an updated schedule and submits the schedule to the cluster manager (Step 3 of Fig. 3). On
completion, the job’s actual runtime is recorded by 3σPredict (along with the attribute information
from the job) and incorporated into the job history for future predictions (Step 4 of Fig. 3).

8

In this section, we detail how 3σPredict estimates runtime distributions (§5.1), how 3σSched
handles mis-estimation (§5.2), and the details of the core scheduling algorithm (§5.3).

5.1 Generating runtime distributions
For each incoming job, 3σPredict provides 3σSched with an estimated runtime distribution.
3σPredict generates this distribution using a black-box approach for prediction. It does not require
user-provided runtime estimates, knowledge of job structures, or explicit declarations of similarity
to specific previous jobs. However, it does assume that, even in multi-purpose clusters used for a
diverse array of activities, most jobs will be similar to some subset of previous jobs.

3σPredict associates each job with set of features. A feature corresponds to an attribute of the
job (e.g., user, program name, submission time, priority, resources requested, and etc.). Attributes
can be combined to form a single feature as well (e.g., user and submission time). 3σPredict tracks
job runtime history for each of multiple features, because no single feature is sufficiently predictive
for all jobs.

3σPredict associates the new job with historical job runtimes with the same features. Because
no single feature is always predictive, 3σPredict generates multiple candidate distributions for each
job. For example, one candidate distribution may consist of runtimes of jobs submitted a single user.
A second candidate distribution may consist of runtimes of jobs submitted with the same job name.

3σPredict selects one candidate distribution to send to 3σSched. To make this decision,
3σPredict compares each distribution’s ability to make accurate point estimates. For a given
candidate distribution, 3σPredict makes point estimates in multiple ways as different estimation
techniques will be more predictive for different distributions. Specifically, 3σPredict uses four
estimation techniques: (a) average, (b) median, (c) rolling (exponentially weighted decay with
α = 0.6), (d) average of X recent job runtimes. 3σPredict tracks the accuracy of each feature-
value:estimator pair, which we refer to as an “expert”, using the normalized mean absolute error
(NMAE) of past estimates. It designates the runtime distribution from the expert with the lowest
NMAE as the distribution estimate of the job.

3σPredict does not make any assumption about the shape of the distribution. Instead, we use
empirical distributions, stored as a histogram of the runtimes for each group. Runtimes often exhibit
uneven distributions (e.g. heavy-tailed, multi-modal), so we use varying bucket widths to ensure
that the shape of the distribution is accurately modeled. We dynamically configure bin sizes using a
stream histogram algorithm [2] with a maximum of 80 bins.

Scalability. Storing and querying the entire history of runtimes of a datacenter is not scalable.
3σPredict employs several sketching techniques to greatly reduce the memory footprint. 3σPredict
1) uses a stream histogram algorithm [2] to maintain an approximate histogram of runtimes, 2)
computes the average and rolling estimates and NMAE metric for each expert in a streaming
manner, and 3) computes the median using recent values as a proxy for the actual median. Using
these techniques, 3σPredict provides effective runtime distributions using constant memory, per
feature-value.

9

5.2 Handling imperfect distributions
3σPredict estimates the empirical distribution of a job using the history of previously executed jobs.
In practice, the estimated runtime distribution is imperfect. Not all jobs have sufficient history to
produce a representative distribution. The runtimes of recurring jobs will also evolve over time (e.g.
different input data, program updates). 3σSched uses the following mitigation strategies to tolerate
error in the estimated runtime distribution.

5.2.1 Under-estimate handling

Distribution schedulers encounter under-estimates when a job runs longer than all historical job
runtimes provided in the distribution. An under-estimate can cause a queued job waiting for the
busy resource to starve or miss its deadline. To mitigate this, when the elapsed time of the job
reaches the maximum observed runtime from the distribution, 3σSched exponentially increments
the estimated finish time by 2t cycles, starting with t = 0 in similar fashion to [22]. Exponential
incrementing (exp-inc) avoids over-correcting for minor mis-predictions. As 3σSched learns that
the under-estimate is more significant, it updates the runtime estimate by progressively longer
increments. Note that under-estimates in 3σSched are much more rare compared to using a single
point estimate. Point estimate schedulers encounter under-estimates when a job runs longer than
the point estimate, whereas 3σSched encounters under-estimates when a job runs longer than all
historical job runtimes.

5.2.2 Over-estimate handling

3σSched encounters over-estimates when all historical runtimes are greater than the time to deadline.
In this case, the expected utility is zero, leading the scheduler to not see any benefit from spending
resources on the job. 3σSched would prefer to keep resources idle, rather than scheduling a job
with zero utility. To mitigate the effects of over-estimates, 3σSched proactively changes the utility
functions of SLO jobs to degrade gracefully. Instead of a sharp drop to zero utility (Fig. 2(a)),
3σSched uses a linearly decaying slope past the deadline (Fig. 2(d)). This way, the estimated
utility of the job will be non-zero, even if all possible completion times exceed the deadline. The
post-deadline utility will be lower than other SLO jobs submitted with the same initial utility.
3σSched will therefore only schedule seemingly impossible jobs when there are available resources
in the cluster.

5.2.3 Adaptive over-estimate handling

Enabling 3σSched’s over-estimate handling comes at a cost. It increases the number of SLO
jobs being tried in favor of completing lower priority jobs. For jobs that were not over-estimated,
resources are wasted. Ideally, we should only enable over-estimate handling for jobs which have a
reasonable probability of being over-estimates.

3σSched leverages the user provided deadline for SLO jobs in predicting the probability that a
job is over-estimated. The deadlines for high priority SLO jobs in production systems are known
to be correlated with its actual runtime, since they are usually the result of profiled test runs or

10

previous executions of the same jobs. Thus, 3σSched treats the time from submission to deadline
as a reasonable proxy for the upper-bound of the runtime. It compares this upper-bound with the
runtime distribution and enables over-estimate handling only if the likelihood of running for less
than the upper-bound is below a configured threshold. If the historical runtime distribution implies
that the job has no chance of meeting its deadline, even if started immediately upon submission, it
is likely that the runtime distribution is skewed toward over-estimation.

5.3 Scheduling algorithm
This section describes the details of the core scheduling algorithm used by 3σSched. The discussion
includes how we adapt the generalized scheduling algorithm (§4) to cope with approximate runtime
distributions, the formulation of the optimization problem, and algorithm extensions to support
preemption. We conclude the section by examining scalability issues arising from the complexity of
solving MILP.

5.3.1 Intuition.

The high level intuition behind the scheduling algorithm is to bin-pack jobs, each represented as a
space-time rectangle in cluster resource space-time, where the x-axis represents time and the y-axis
enumerates the resources available. Current time is represented as a point on the x-axis. Placing a
job further along the x-axis, away from current time, is equivalent to deferring it for future execution.
This is useful when a job’s preferred resources are busy, but are expected to free up in time to
meet the job’s deadline. Placing a job on different types of resources (moving its position along
the y-axis) changes the shape of the rectangles, as the resource type affects its required resources
and completion time. Each job can then be thought of as an enumeration of candidate space-time
rectangles, each corresponding to a utility value. The job of the scheduler is to maximize the overall
utility of the placement decision by making an instantaneous decision on (a) which jobs to execute
and which to defer, and (b) which placement options to pick for those jobs. To achieve this, the
scheduler must have a way to formulate all jobs’ resource requests so that all pending requests may
be considered in aggregate. 3σSched achieves this by formulating jobs’ resource requests as Mixed
Integer Linear Programming instances.

The scheduler operates on a periodic cycle (at the granularity of seconds, e.g., 1-2s), making
a placement decision at each cycle for all pending jobs. The schedule for all pending jobs is
re-evaluated every cycle to provide a basic level of robustness to runtime mis-estimation [24]. The
sketch of the scheduling algorithm is as follows.

1. Translate each job’s resource request to its MILP representation.

2. Aggregate jobs’ demand constraints.

3. Construct resource capacity constraints.

4. Construct the aggregate objective function as the sum of jobs’ individual objective functions,
modulated by binary indicator variables.

5. Solve the MILP (using an external MILP solver).

11

6. Extract job placement results from MILP solution.

7. Report the scheduling decision to the resource manager.

8. Dequeue scheduled jobs from the pending queue.

5.3.2 MILP Formulation

The first step of the algorithm is to convert all jobs to their MILP representation. This is done
by generating all possible placement options, both over different types of resources (space) and
over time. 3σSched minimizes the set of possibilities by adopting the notion of equivalence sets,
introduced in [24]. Equivalence sets are sets of resources equivalent from the perspective of a
given job, e.g. all nodes with a GPU. 3σSched reasons about these sets of resources instead of
enumerating all possible node combinations. As a result, the complexity of MILP depends on the
number of equivalence sets rather than the cluster size. Thus, equivalence sets help manage the size
of generated MILP in the space dimension. MILP size in the time dimension is controlled by the
plan-ahead window sched.

A given placement option includes a specification of the equivalence set, the starting time
s ∈ [now;now+ sched], the estimated runtime distribution, and how many nodes are requested k.
The estimated runtime distribution for a running job is reconsidered at every scheduling event, based
on how long the job has run so far as described in Eq. 2. Updates to the runtime distribution changes
the scheduler’s expectation of the jobs’ future resource consumption. This allows 3σSched to react
to mis-estimates, e.g., by re-planning pending jobs waiting for preferred resources to a different set
of nodes, or preempting lower priority jobs.

Each placement option is associated with a const utility value obtained by using Eq. 1. The
corresponding objective function for this job becomes a sum of these values modulated by binary
indicator decision variables. Namely, given job j and placement option o, the MILP generator
associates an indicator variable I jo, adding a constraint that at most one option is selected for each
job: ∀ j ∑o I jo ≤ 1. Thus, the aggregate objective function to maximize is ∑ j ∑oU joI jo. A solution
that maximizes this function effectively selects (a) which jobs to run now, and (b) which placement
option o to pick for selected job j.

This objective function is maximized subject to a set of auto-generated constraints: capacity
and demand constraints. Demand constraints ensure that (a) the sum of allocations from different
resource partitions [24] is equal to the requested quantity of resources k, and (b) at most one
placement option is selected: ∀ j ∑o I jo ≤ 1. Capacity constraints provide the invariant that

∀t ∈ [now;now+ sched]∑
jo

k ·RC j(t− s)I jo ≤C(t), (3)

where RC j(t) is the expected resource consumption of job j at time t (§4.2). This ensures that
aggregate allocations do not exceed the expected available capacity C(t) at time t.

5.3.3 Preemption

In rare cases, 3σSched needs to re-consider scheduling decisions for currently running jobs. For
example, due to under-estimates, the scheduler may incorrectly choose to aggressively postpone

12

SLO jobs to complete more BE jobs. The scheduler might be able to reschedule if there are enough
resources. However, sometimes the only way to meet the deadline is to preempt lower-priority jobs
running in the cluster.

Preemption is naturally supported in the existing MILP generation framework, as it is able to
simultaneously consider pending jobs for placement and running jobs for preemption. Thus, the
goal of the scheduler is to maximize the aggregate value of placed jobs, while incurring a cost
for preempting jobs. The latter is a ∑r PrI

p
r , where Ip

r is an indicator variable tracking whether to
preempt a running job r. Pr is the preemption cost for the running job r and is configured by the
preemption policy. The overall objective function then becomes ∑ j,oU joI jo−∑r PrI

p
r .

The capacity constraint extension, intuitively, credits back resources associated with preempted
jobs: ∑ jo koRC j(t − s)I jo ≤ C(t) +∑r krRCr(t − e)Ip

r . RCr is the up-to-date expected resource
consumption of the running job r, and e is the elapsed time of r.

5.3.4 Scalability

Solving MILP is known to be an NP-hard problem. To minimize the excessive latency caused by
the solver, we apply a number of optimizations. The primary optimization we perform is seeding
each new cycle’s MILP problem with the solution from the previous cycle. Intuitively, the previous
cycle’s solution corresponds to leaving the cluster state unchanged. As such, it represents a feasible
solution. Second, we have empirically found that the solver spends most of the time validating
optimality for the solution it otherwise quickly finds. Thus, we get near-optimal performance by
querying the solver for the best solution found within a configurable fraction of its scheduling
interval. Third, the plan-ahead window bounds the complexity of the MILP problem by adjusting the
range of time over which job placements are considered. Fourth, 3σSched performs some internal
pruning of generated MILP expressions, which include eliminating terms with zero constant.

6 Distribution-based scheduling for resource usage variation
3Sigma focused on the uncertainty in the runtime dimension and assumed that the actual resources
consumption of a job is deterministic and provided by the user. However, workload analyses reveal
that resource usage estimates from the user suffer similar problems to user estimated runtimes. For
example, in the Google trace, there exists discrepancy between the resources requested by the user
and the actual resources used by the job. We plan to explore the following additional scheduler
design elements to support distribution-based scheduling for both resources and time dimensions.

6.1 Submachine granularity assignment
As a prerequisite to investigate uncertainty in the resource dimension, we propose to extend 3Sigma
to support submachine granularity assignment, where the scheduler can assign multiple tasks
onto the same machine. The key challenge is to achieve this in a scalable fashion without overly
complicating the optimization problem.

13

3Sigma and TetriSched were able to simplify the MILP problem by reasoning about equivalence
sets of machines that are equivalent from the perspective of a given job, instead of enumerating all
possible node combinations. A trivial implementation of submachine granularity assignment breaks
this optimization, as naive allocation decisions may result in numerous singleton equivalence sets.

Instead, we propose to restrict the size of resource requests to powers of two (1Gib, 2Gib,
4Gib, and so on). This will bound the number of equivalence sets encountered in practice and only
increase the complexity of the resulting MILP by a constant factor.

6.2 Estimating resource distribution
We propose to extend and adapt our approach to estimating runtime distributions (Sec. 5.1) to
produce per-job estimates of resource usage from the history of jobs run in the past.

The main difference from the runtime distribution is that the resource usage of is a sequence of
values rather than a single numeric quantity like runtime. Moreover, the usage changes over time
rather than staying constant throughout the execution for most jobs. Still, we expect the estimator
will be able to predict the likelihood of following properties for each submitted job with reasonable
accuracy: 1) average (during a job’s execution) resource usage, 2) 95th percentile (during a job’s
execution) resource usage, 3) job runtime.

The estimator needs to maintain the resource usage information by the jobs run in the past, in
order to produce the estimate. We plan to use approximate histograms and streaming algorithms to
reduce the memory footprint of retaining this information.

6.3 Scheduler that copes with uncertainty in resource and time dimension
We propose to extend the core scheduling algorithm (Sec. 4), so that it can leverage the additional
knowledge about the likelihood of resource usage. The scheduler will compute the utility of each
scheduling options based on the runtime distribution and the likelihood of whether given jobs will
fit onto a given machine. Similarly, the expected resource consumption will reflect both runtime
distribution and likelihood of the resource usage.

In addition, we plan to devise ways to improve resource usage estimates for a running job’s
execution using the observations of the actual resource usage. We believe the scheduler can be more
proactive in making better informed decisions in the face of imperfect expectations. For example,
unlike job runtimes where the estimate error cannot be detected for some time after the job start, the
scheduler can easily spot some errors in the resource usage estimate (e.g. underestimated) using the
actual resource usage early on. Specifically, we intend to explore several ideas that may be useful:

1) Rejecting a chosen candidate distribution from the estimator and choosing another candidate
distribution, if the candidate distribution does not match the observations so far. This will improve
the case where the less-accurate distribution (based on the MAE – median absolute error – of the
point estimate) is chosen. Note that this can work in tandem with 3Sigma’s existing approach of
re-balancing the distribution using the observed runtime.

2) Looking at the distribution of the change in the resource usage during the course of jobs’
runtimes, to control the aggressiveness of the scheduler. For example, if it is more likely for
the resource usage to be constant over during the task’s lifetime, then the scheduler can be more

14

aggressive in packing more tasks on the machine. Likewise, if larger variation in resource usage is
expected, the scheduler can be more conservative and leave a buffer in case there is a sudden burst.

7 Proposed Timeline
Month Research Plan

April 2018 Prepare the Eurosys 2018 conference presentation of 3Sigma.
May 2018 - June 2018 Implement submachine granularity assignment.

July 2018 - August 2018 Implement the estimator for the distribution of resource usage.
August 2018 - September 2018 Implement the core scheduling algorithm that reflects the distribu-

tion of both resource usage and time.
October 2018 - November 2018 Explore strategies to mitigate errors in the estimate of distributions.
December 2018 - January 2019 Finish running of experiments (Occurring throughout).

January 2019 - May 2019 Dissertation writing, defense, and job search.

References
[1] George Amvrosiadis, Jun Woo Park, Gregory R. Ganger, Garth A. Gibson, Elisabeth Baseman,

and Nathan DeBardeleben. Bigger, longer, fewer: what do cluster jobs look like outside
google? Technical Report CMU-PDL-17-104, Carnegie Mellon Univedrsity Parallel Data
Laboratory, Oct 2017. 1

[2] Yael Ben-Haim and Elad Tom-Tov. A streaming parallel decision tree algorithm. Journal of
Machine Learning Research, 11(Feb):849–872, 2010. 5.1

[3] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian, Ming
Wu, and Lidong Zhou. Apollo: Scalable and coordinated scheduling for cloud-scale
computing. In 11th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 14), pages 285–300, Broomfield, CO, October 2014. USENIX Associa-
tion. ISBN 978-1-931971-16-4. URL https://www.usenix.org/conference/osdi14/

technical-sessions/presentation/boutin. 1, 3.1

[4] Yun Chi, Hakan Hacı́gümüş, Wang-Pin Hsiung, and Jeffrey F Naughton. Distribution-based
query scheduling. Proceedings of the VLDB Endowment, 6(9):673–684, 2013. 3.3

[5] Carlo Curino, Djellel E. Difallah, Chris Douglas, Subru Krishnan, Raghu Ramakrishnan, and
Sriram Rao. Reservation-based scheduling: If you’re late don’t blame us! In Proceedings
of the ACM Symposium on Cloud Computing, SOCC ’14, pages 2:1–2:14, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-3252-1. doi: 10.1145/2670979.2670981. URL http:

//doi.acm.org/10.1145/2670979.2670981. 1, 3.1, A, B.5

[6] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-efficient and qos-aware
cluster management. In Proceedings of the 19th International Conference on Architectural

15

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/boutin
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/boutin
http://doi.acm.org/10.1145/2670979.2670981
http://doi.acm.org/10.1145/2670979.2670981

Support for Programming Languages and Operating Systems, ASPLOS ’14, pages 127–144,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2305-5. doi: 10.1145/2541940.2541941.
URL http://doi.acm.org/10.1145/2541940.2541941.

[7] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and Aditya Akella.
Multi-resource packing for cluster schedulers. ACM SIGCOMM Computer Communication
Review, 44(4):455–466, 2015. 3.1

[8] Robert Grandl, Mosharaf Chowdhury, Aditya Akella, and Ganesh Ananthanarayanan. Altruis-
tic scheduling in multi-resource clusters. In OSDI, pages 65–80, 2016. 3.1, 3.2

[9] Mike Hibler, Robert Ricci, Leigh Stoller, Jonathon Duerig, Shashi Guruprasad, Tim Stack, Kirk
Webb, and Jay Lepreau. Large-scale virtualization in the emulab network testbed. In USENIX
2008 Annual Technical Conference, ATC’08, pages 113–128, Berkeley, CA, USA, 2008.
USENIX Association. URL http://dl.acm.org/citation.cfm?id=1404014.1404023.
A

[10] Mohammad Islam, Angelo K Huang, Mohamed Battisha, Michelle Chiang, Santhosh Srini-
vasan, Craig Peters, Andreas Neumann, and Alejandro Abdelnur. Oozie: Towards a Scalable
Workflow Management System for Hadoop. In SWEET Workshop, 2012. 3.1

[11] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, Shravan Matthur Narayanamurthy,
Alexey Tumanov, Jonathan Yaniv, Ruslan Mavlyutov, Íñigo Goiri, Subru Krishnan, Janardhan
Kulkarni, et al. Morpheus: towards automated slos for enterprise clusters. In Proceedings
of the 12th USENIX conference on Operating Systems Design and Implementation, pages
117–134. USENIX Association, 2016. 1, 3.1, 3.3, A

[12] Shuo Liu, Gang Quan, and Shangping Ren. On-line scheduling of real-time services for cloud
computing. In Services (SERVICES-1), 2010 6th World Congress on. IEEE, 2010. 3.3

[13] I. A. Moschakis and H. D. Karatza. Performance and cost evaluation of gang scheduling
in a cloud computing system with job migrations and starvation handling. In Computers
and Communications (ISCC), 2011 IEEE Symposium on, pages 418–423, June 2011. doi:
10.1109/ISCC.2011.5983873. 3.1

[14] John K Ousterhout. Scheduling techniques for concurrent systems. In International Conference
on Distributed Computing Systems (ICDCS), volume 82, pages 22–30, 1982. 3.1

[15] Jun Woo Park, Alexey Tumanov, Angela Jiang, Michael A. Kozuch, and Gregory R. Ganger.
3sigma: Distribution-based cluster scheduling for runtime uncertainty. In Proceedings of
the Thirteenth European Conference on Computer Systems, EuroSys ’18, New York, NY,
USA, 2018. ACM. ISBN 978-1-4503-5584-1/18/04. doi: 10.1145/3190508.3190515. URL
http://doi.acm.org/10.1145/3190508.3190515. 1

[16] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and Michael A. Kozuch.
Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In Proc. of the 3nd
ACM Symposium on Cloud Computing, SOCC ’12, 2012. 1, 3, A

16

http://doi.acm.org/10.1145/2541940.2541941
http://dl.acm.org/citation.cfm?id=1404014.1404023
http://doi.acm.org/10.1145/3190508.3190515

[17] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and Michael A Kozuch.
Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In Proceedings of the
Third ACM Symposium on Cloud Computing, page 7. ACM, 2012. 3.2, A

[18] Jennifer M. Schopf and Francine Berman. Stochastic scheduling. In SC ’99 Proceedings of
the 1999 ACM/IEEE conference on Supercomputing. ACM, 1999. 3.3

[19] Bikash Sharma, Victor Chudnovsky, Joseph L. Hellerstein, Rasekh Rifaat, and Chita R.
Das. Modeling and synthesizing task placement constraints in Google compute clusters. In
Proc. of the 2nd ACM Symposium on Cloud Computing, SOCC ’11, pages 3:1–3:14. ACM,
2011. ISBN 978-1-4503-0976-9. doi: http://doi.acm.org/10.1145/2038916.2038919. URL
http://doi.acm.org/10.1145/2038916.2038919. 3

[20] Warren Smith, Ian T. Foster, and Valerie E. Taylor. Predicting application run times using
historical information. In Proceedings of the Workshop on Job Scheduling Strategies for
Parallel Processing. IEEE, 1998. 3.2

[21] Roshan Sumbaly, Jay Kreps, and Sam Shah. The Big Data Ecosystem at LinkedIn. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD,
2013. 3.1

[22] Dan Tsafrir, Yoav Etsion, and Dror G. Feitelson. Backfilling using system-generated predic-
tions rather than user runtime estimates. In IEEE Transactions on Parallel and Distributed
Systems. IEEE, 2007. 3.3, 5.2.1

[23] Alexey Tumanov, Angela Jiang, Jun Woo Park, Michael A. Kozuch, and Gregory R. Ganger.
JamaisVu: Robust Scheduling with Auto-Estimated Job Runtimes. Technical Report CMU-
PDL-16-104, Carnegie Mellon University, September 2016. 1, 3.2

[24] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A. Kozuch, Mor Harchol-Balter, and
Gregory R. Ganger. Tetrisched: Global rescheduling with adaptive plan-ahead in dynamic
heterogeneous clusters. In Proceedings of the Eleventh European Conference on Computer
Systems, EuroSys ’16, pages 35:1–35:16, New York, NY, USA, 2016. ACM. ISBN 978-
1-4503-4240-7. doi: 10.1145/2901318.2901355. URL http://doi.acm.org/10.1145/

2901318.2901355. 1, 3.1, 3.2, 5.3.1, 5.3.2, A, B.5

[25] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar,
Robert Evans, Thomas Graves, , Jason Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo
Curino, Owen O’Malley, Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler. Apache
Hadoop YARN: Yet another resource negotiator. In Proc. of the 4th ACM Symposium on Cloud
Computing, SOCC ’13, 2013. A

[26] A. Verma, M. Korupolu, and J. Wilkes. Evaluating job packing in warehouse-scale computing.
In 2014 IEEE International Conference on Cluster Computing (CLUSTER), pages 48–56, Sept
2014. doi: 10.1109/CLUSTER.2014.6968735. 1, 3

17

http://doi.acm.org/10.1145/2038916.2038919
http://doi.acm.org/10.1145/2901318.2901355
http://doi.acm.org/10.1145/2901318.2901355

[27] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric Tune, and
John Wilkes. Large-scale cluster management at Google with Borg. In Proceedings of the
Tenth European Conference on Computer Systems, EuroSys ’15, pages 18:1–18:17, New York,
NY, USA, 2015. ACM. ISBN 978-1-4503-3238-5. doi: 10.1145/2741948.2741964. URL
http://doi.acm.org/10.1145/2741948.2741964. 3.3, A

[28] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac Newbold,
Mike Hibler, Chad Barb, and Abhijeet Joglekar. An Integrated Experimental Environment
for Distributed Systems and Networks. In Proc. of the Fifth Symposium on Operating Sys-
tems Design and Implementation, pages 255–270, Boston, MA, December 2002. USENIX
Association. A

[29] Timothy Wood, Prashant J Shenoy, Arun Venkataramani, and Mazin S Yousif. Black-box and
gray-box strategies for virtual machine migration. In NSDI, volume 7, pages 17–17, 2007. 3.3

[30] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott Shenker, and
Ion Stoica. Delay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling. In Proceedings of the 5th European conference on Computer systems (Eurosys),
pages 265–278. ACM, 2010. 3.1

18

http://doi.acm.org/10.1145/2741948.2741964

System Runtime estimation Overestimate handling
3Sigma Real distributions Adaptive over-estimate handling
PointPerfEst Perfect point estimates No over-estimate handling
PointRealEst Real point estimates No over-estimate handling
Prio No estimate used No estimate used

Table 1: Scheduler approaches compared.

A Experimental Setup
We conduct a series of end-to-end experiments and microbenchmarks to evaluate 3Sigma, integrated
with Hadoop YARN [25]–a popular open source cluster scheduling framework. We find YARN’s
support for time-aware reservations and placement decisions and its popularity in enterprise a good fit
for our needs. We implement a proxy scheduler wrapper that plugs into YARN’s ResourceManager
and forwards job resource requests asynchronously to 3Sigma. Jobs are modeled as Mapper-
only jobs. We use a synthetic generator based on Gridmix 3 to generate Mapper-only jobs that
respect the runtime parameters for arrival time, job count, size, deadline, and task runtime from the
pre-generated trace.

Cluster configurations. We conduct experiments on two cluster configurations: a 256-node
real cluster (RC256) and a simulated 256-node cluster (SC256). RC256 consists of 257 physical
nodes (1 master + 256 slaves in 8 equal racks), each equipped with 16GB of RAM and a quad-core
processor. The simulations complete in 1

5
th

the time on a single node, allowing us to evaluate more
configurations and longer workloads. We also conduct an experiment with a simulated 12,583-node
cluster (GOOGLE) to evaluate 3Sigma’s scalability.

Systems compared. We compare the four scheduler approaches in Table 1. 3Sigma is our
system in which 3σSched is given real runtime distributions provided by 3σPredict and uses
adaptive overestimate handling. Both PointPerfEst and PointRealEst use an enhanced version
of [24] with under-estimate handling (§5.2) and preemption (§5.3). It represents the state-of-the-art in
schedulers that rely on point estimates. This includes Rayon, Morpheus, and TetriSched [5, 11, 24],
enhanced with the state-of-the-art in techniques for handling imperfect estimates. PointPerfEst
is a hypothetical system in which the scheduler is given a correct runtime for every incoming job.
PointRealEst uses point runtime estimates from 3σPredict. Prio is a priority scheduler, giving
SLO jobs strict priority over BE jobs rather than leveraging runtime information, which represent
schedulers like Borg [27].

Workloads. The bulk of our experiments use workloads derived from the Google cluster
trace [16]. We use a Google trace-derived workload (termed ”E2E”) for overall comparisons among
schedulers as well as workloads that vary individual workload characteristics (e.g., runtime variation
or cluster load) to explore sensitivities. All workloads are 5 hours in length (˜1500 jobs) except
for the 2hr E2E (˜600 jobs), used to expedite the experiment in RC256. The E2E workload is
synthetically generated from Google trace characteristics. We evaluated the quality of estimates
(as in §3.2) and confirmed that the runtime predictability of the generated workload was similar
to the original Google trace. In simulation, we have also obtained similar experimental results by
drawing random trace samples from the original instead of using the E2E workload. To generate a

19

workload, all jobs larger than 256 nodes were filtered out. The remaining jobs — clustered using
k-means clustering on their runtimes. We derive parameters for the distributions of the job attributes
(e.g., runtime and number of tasks) and the probability mass function of features in each job class.
The arrival process used was exponential with a coefficient of variance of 4 (c2

a=4). We draw jobs
from each job class proportionally to the empirical job-class distribution. We also pick job attributes
and features for each job according to the empirical distribution of attributes and features from
the job-class. Each workload consists of an even mixture of SLO jobs with deadlines and latency
sensitive best effort (BE) jobs. SLO jobs have soft placement constraints (preferred resources set
to a random 75% of the cluster, as observed in the original trace). SLO jobs run 1.5x longer if
scheduled on non-preferred resources.

For the experiment in §B.1, we also use workload HEDGEFUND E2E and MUSTANG E2E
derived from the HedgeFund and Mustang cluster, respectively. For these workloads we filtered out
jobs larger than 256 nodes, but took a 5 hour segment of the original workload instead of deriving
parameters and regenerating based on the distribution. The segment was randomly selected among
many segments that have a similar load to the E2E workload.

HedgeFund: This workload is collected from two private computing clusters of a quantitative
hedge fund firm. Each cluster uses an instance of an internally developed scheduler, run on top of a
Mesos cluster manager. The workload consists of 3.2 million jobs submitted to two clusters over
a nine month period. The majority of jobs analyze financial data and there are no long-running
services.

Mustang: This workload includes the entire operating history of the Mustang HPC cluster used
for capacity computing at Los Alamos National Laboratory. Entire machines are allocated to users,
in similar fashion to Emulab[9, 28]. The workload consists of 2.1 million jobs submitted within a
period of 61 months (2011 ∼ 2016).

Estimates. Because the experiments are 5-hour windows, we pre-train 3σPredict before running
them to produce steady-state estimates for 3Sigma and PointRealEst. For the Google workload,
we use a subset of the generated trace for pre-training and use the rest for our experiments. Only the
features present in the original trace were used to generate point and distribution estimates (e.g.,
job class, the runtime class membership feature not present in the original trace, was never used in
order to maintain a fair experimental setup). For other workloads, we pre-train on jobs completed
before the selected 5 hour segment begins.

Workload configurations. For SLO jobs, the deadline slack is an important consideration.
Since the original workloads do not include deadline information, we generate deadlines for each
SLO job as follows. Deadline slack is defined as (deadline−submissiontime−runtime)/runtime∗
100 (i.e., a slack of 60% indicates that the scheduler has a window 60% longer than the runtime in
which to complete the job). Tighter deadlines are more challenging for schedulers. By default, we
select each job’s deadline slack randomly from a set of 4 options: 20%, 40%, 60%, and 80%. These
default values are much smaller than experimented in [24] (which used slacks of 250% and 300%),
matching the finding in [11] that tighter deadlines are also possible.

Load is a measure of offered work (machine×hours) submitted to the cluster scheduler as a
proportion of cluster capacity. The nominal offered load is 1.4 (unless specified otherwise). We first
chose the load for SLO jobs as 0.7, approximating the load offered by production jobs in [17]. We

20

3Sigma Point
PerfEst

Point
RealEst

Prio
0

5

10

15

20

25

S
LO

 M
is

s(
%

)

(a) SLO Miss rate

3Sigma Point
PerfEst

Point
RealEst

Prio
0

50

100

150

200

250

300

350

400

G
o
o
d
p
u
t(
M
-H
r)

SLO BE

(b) Goodput

3Sigma Point
PerfEst

Point
RealEst

Prio
0

50

100

150

200

250

300

B
e
st

 E
ff

o
rt

 L
a
te

n
cy

(s
)

(c) BE latency
Figure 4: Compares the performance of 3Sigma with other systems in the real cluster. 3Sigma constantly
outperforms PointRealEst and Prio on SLO miss-rate and Goodput while nearly matching PointPerfEst.
Cluster:RC256. Workload:E2E
added equal proportion of BE jobs as to not unfairly bias the scheduling problem towards SLO jobs
and to demonstrate the behavior of system under stressful conditions.

Note our definition of load is different from effective load, a ratio of actual resources allocated
for all jobs (successful and not successful) to the cluster capacity. Effective load is different for each
scheduling approach as they make different allocation decisions, even if the same jobs are injected
to the system. In all experiments and for all scheduling approaches, the cluster was run close to its
space-time capacity.

Success metrics. We use the following goodness metrics when comparing schedulers. Our
primary goal is to minimize SLO miss rate: the percentage of SLO jobs that miss their deadline.
We also want to measure the total work completed in machine-hours (goodput), showing how much
aggregate work is completed, since BE goodput and the goodput of incomplete SLO jobs is not
represented by the SLO miss rate. Finally, we measure mean BE latency—the mean response time
for BE jobs.

B Experimental Results
This section evaluates 3Sigma, yielding five key takeaways. First, 3Sigma achieves significant
improvement over the state-of-the-art in SLO miss rate, best-effort job goodput, and best-effort
latency in a fully-integrated real cluster deployment, approaching the performance of the unrealistic
PointPerfEst in SLO miss rate and BE latency. Second, all of the 3σSched component features
are important, as seen via a piecewise benefit attribution. Third, estimated distributions are beneficial
in scheduling even if they are somewhat inaccurate, and such inaccuracies are better handled by
distribution-based scheduling than point-estimate-based scheduling. Fourth, 3Sigma performs well
(i.e., comparably to PointPerfEst) under a variety of conditions, such as varying cluster load,
relative SLO job deadlines, and prediction inaccuracy. Fifth, we show that the 3Sigma components
(3σPredict and 3σSched) can scale to >10000 nodes.

B.1 End-to-end performance
Fig. 4 shows performance results for the four scheduling systems running on the real cluster
(RC256).

21

3Sigma is particularly adept at minimizing SLO misses, our primary objective, and com-
pleting more useful work, approaching PointPerfEst and significantly outperforming the non-
hypothetical systems. 3Sigma performs well, despite not having the luxury of perfect job runtime
knowledge afforded to PointPerfEst. It uses historical runtime distributions to make informed
decisions, such as whether to start a job early to give ample time for it to complete before its
deadline, or to be optimistic and schedule the job closer to the deadline. However, 3Sigma is
not perfect. It misses a few more SLO job deadlines than PointPerfEst, and it completes fewer
best-effort jobs because 3σSched preempts more best-effort jobs to make additional room for SLO
jobs for which the distribution indicates a wider range of possible runtimes for a job . BE latency is
similar across all system.

PointRealEst exhibits much higher SLO miss rates (18%, or 4.0X higher than 3Sigma), and
lower goodput (5.4% lower than 3Sigma), because previous approaches struggle with realistic
prediction error profiles. Because PointRealEst schedules based on only point estimates (instead
of complete runtime distributions) and lacks an explicit overestimate handling policy, it makes
less informed decisions and struggles to handle difficult-to-estimate runtimes (e.g., due to greater
variance for a job type). For underestimated SLO jobs (that ran shorter in the past on average),
PointRealEst is often too optimistic and starts the job later than it should. For overestimated SLO
jobs, PointRealEst is often too conservative, neglecting to schedule SLO jobs which are predicted
to not finish in time, even if cluster resources are available.

Prio misses 12% of SLO job deadlines (2.3x more than 3Sigma). It does not take advantage of
any runtime information, thereby missing opportunities to wait for preferred resources or exploit one
job’s large deadline slack to start a tighter deadline job sooner. Prio is better than PointRealEst in
terms of SLO misses but much worse in BE goodput, as it always prioritizes SLO jobs at the expense
of increased preemption of BE jobs, even when deadline slack makes preemption unnecessary.
When the runtime is over-estimated, PointRealEst may not even attempt to run a job thinking that
it would not complete in time, while Prio will always attempt to schedule any SLO jobs if there are
enough resources.

Simulator experiments. We validate our simulation setup (SC256) by running the identical
workload to that in experiment in Fig. 4. Similar trends are observed across all our systems and
success metrics. Table 2 shows the small differences observed for the 12 bars shown in Fig. 4.

Performance comparison varying workload.
Fig. 5 summarizes the performance of the scheduling systems under three different workloads.

We observe that the overall behavior of the schedulers is similar to our observations in §B.1. For
all workloads, 3Sigma outperforms PointRealEst and Prio, while approximately matching the
performance of PointPerfEst. Surprisingly, for the HedgeFund and Mustang workloads, 3Sigma

Metric(unit) ∆ SLO miss(%) ∆ goodput(M-Hr) ∆ BE latency(s)
PointPerfEst 0.6784 25.27 7.282

3Sigma 0.2875 27.10 11.08
PointRealEst 2.025 22.83 2.383

Prio 1.853 19.83 12.07

Table 2: Absolute performance difference between real and simulation experiments. Workload:E2E.

22

Google HedgeFund Mustang
0

5

10

15

20

S
LO

 M
is

s(
%

)

3Sigma

Point - PerfEst

Point - RealEst

Prio

(a) SLO Miss rate

Google HedgeFund Mustang
0

200

400

600

800

1000

1200

G
o
o
d
p
u
t(

M
-H

r)

3Sigma
SLO

Point - PerfEst
BE

Point - RealEst Prio

(b) Goodput

Google HedgeFund Mustang
0

200

400

600

800

1000

1200

1400

1600

1800

B
E
 L

a
te

n
cy

(s
)

3Sigma

Point - PerfEst

Point - RealEst

Prio

(c) BE latency
Figure 5: Compares the performance of 3Sigma with other systems under workloads from different
environments in simulated cluster. 3Sigma constantly outperforms PointRealEst and Prio on SLO miss
rate and Goodput while nearly matching PointPerfEst. The Google workload is 5hr variant of E2E.
Cluster:SC256. Workload:E2E, HEDGEFUND E2E, MUSTANG E2E

slightly outperforms PointPerfEst. This is possible because, while PointPerfEst does receive
perfect runtime knowledge as jobs arrive, it does not possess knowledge of future job arrivals (nor
do any of the other systems). Consequently, it may make sub-optimal scheduling decisions, such as
starting a SLO job late and not leaving sufficient resources for future arrivals. 3Sigma also does not
possess knowledge of future job arrivals, but it tends to start SLO jobs earlier than PointPerfEst

when the distribution suggests likelihood of a runtime longer than the actual runtime.
We also observe that PointRealEst performs poorly on SLO miss rate across different work-

loads. Further, miss-rate is only slightly better for Mustang. This is surprising, as a much larger
portion (compared to other workloads) of jobs in Mustang have very accurate point estimates
(Fig. 1(a)). We believe PointRealEst still performs poorly as a small number of the estimates are
off by a large margin, adversely affecting the ability of the scheduler to make informed decision.
But, many of the mis-estimates are associated with small jobs; consequently, PointRealEst and
Prio are able to provide high goodput despite having high SLO miss-rates.

B.2 Attribution of benefit

20 40 60 80 100 120 140 160 180
Deadline Slack(%)

0

10

20

30

40

50

SL
O

M
iss

(%
)

Point - RealEst
3SigmaNoDist
3SigmaNoOE
3SigmaNoAdapt
3Sigma
Point - PerfEst

(a) SLO Miss

20 40 60 80 100120140160180
Deadline Slack(%)

0

200

400

600

800

1000

1200

SL
O

Go
od

pu
t(M

-H
r) Point - RealEst

3SigmaNoDist
3SigmaNoOE

3SigmaNoAdapt
3Sigma
Point - PerfEst

(b) SLO Goodput

20 40 60 80 100120140160180
Deadline Slack(%)

0

100

200

300

400

500

600

BE
 G

oo
dp

ut
(M

-H
r) Point - RealEst

3SigmaNoDist
3SigmaNoOE

3SigmaNoAdapt
3Sigma
Point - PerfEst

(c) BE Goodput

Figure 6: Attribution of Benefit. The lines representing 3Sigma with individual techniques disabled—
demonstrating that all are needed to achieve the best performance. The workload is E2E with a constant
deadline slack. Cluster:SC256 Workload:DEADLINE-n where n ∈ [20,40,60,80,100,120,140,160,180]

3σSched introduces distribution-based scheduling and adaptive overestimate handling to ro-

23

bustly address the effects of runtime uncertainty. This section evaluates the individual contribu-
tions of these techniques. Fig. 6 shows performance as a function of deadline slack for 3Sigma,
PointPerfEst,
PointRealEst, and three versions of 3Sigma, each with a single technique disabled: 3SigmaNoDist
uses point estimates instead of distributions, 3SigmaNoOE turns off the overestimate handling policy,
and 3SigmaNoAdapt turns off just the adaptive aspect of the policy and uses maximum overestimate
handling for every job.

When the scheduler explicitly handles overestimates (compare 3SigmaNoDist to PointRealEst),
SLO miss rate decreases because over-estimated SLO jobs are optimistically allowed to run, rather
than discarding them as soon as they appear to not have enough time to finish before the deadline.
However, SLO miss rate for 3SigmaNoDist is still high, because the lack of distribution awareness
obscures which jobs are more likely to succeed if tried; therefore, 3SigmaNoDist wastes resources
on SLO jobs that won’t finish in time.

Simply using distribution-based scheduling (see, e.g.,
3SigmaNoOE) drops SLO miss rate to the level of PointPerfEst for most deadline slacks. By
considering the variance of job runtimes, the scheduler can conservatively schedule jobs with
uncertain runtimes and optimistically attempt jobs that are estimated to have a non-zero probability
of completion.

Blindly turning on overestimate handling decreases SLO miss rates at the lowest deadline slacks
(3SigmaNoAdapt). However, 3SigmaNoAdapt is overly optimistic— even attempting jobs that
would seem impossible given their historical runtimes— provided there are enough resources for
SLO jobs in the cluster. This over-optimism results in lower BE goodput relative to 3Sigma’s
adaptive approach of enabling overestimate handling only for a small proportion of the jobs whose
distributions indicate likely success.

B.3 Distribution-based scheduling benefits

-50 -20 0 20 50 100
Artificial Shift(% Runtime)

0
5

10
15
20
25
30
35
40

S
LO

 M
is

s(
%

)

point

CoV=10%

CoV=20%

CoV=50%

(a) SLO Miss rate

-50 -20 0 20 50 100
Artificial Shift(% Runtime)

0

50

100

150

200

250

300

S
LO

 G
o
o
d
p
u
t(

M
-H

r)

point

CoV=10%

CoV=20%

CoV=50%

(b) SLO Goodput

-50 -20 0 20 50 100
Artificial Shift(% Runtime)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 Jo

bs

Shift <= -10% Shift in (-10,10) Shift >= 10%

(c) Shift Profile
Figure 7: 3Sigma’s performance when artificially varying runtime distribution shift (x-axis) and width
(Coefficient of Variation curves). The runtime distribution provided to the scheduler is ∼ N (µ =
job runtime ∗ (1+ x

100),σ = job runtime ∗CoV). Each trace consists of jobs that are either within 10%
accuracy or under- or over-estimates jobs. The group of jobs achieves a target average artifical shift. (c)
shows the breakdown of these job types for each artificial shift value. Distribution-based schedulers always
outperforms the point estimate-based scheduler. Tighter distributions perform better than wider distribution
with a smaller artificial shift, but wider distributions are better with a larger artificial shift. The workload is 2
hrs in length. Cluster:SC256. Workload:E2E

24

1.0 1.2 1.4 1.6
Load

0

10

20

30

SL
O

M
iss

(%
)

Point - PerfEst
3Sigma

Point - RealEst
Prio

(a) SLO Miss-rate

1.0 1.2 1.4 1.6
Load

0

100

200

300

400

500

600

BE
 G

oo
dp

ut
(M

-H
r) Point - PerfEst

3Sigma
Point - RealEst
Prio

(b) BE Goodput

1.0 1.2 1.4 1.6
Load

0

100

200

300

400

500

600

BE
 L

at
en

cy
(s

)

Point - PerfEst
3Sigma

Point - RealEst
Prio

(c) Best Effort latency

Figure 8: 3Sigma outperforms others on SLO misses for a range of loads, matching PointPerfEst

closely. All systems prioritize SLO jobs by sacrificing BE jobs when load spikes. Cluster:SC256, Workload:
E2E-LOAD-` where ` ∈ [1.0,1.2,1.4,1.6]

This section explores the robustness of 3Sigma to perturbations of the runtime distribution. In
this study, for each job drawn from the E2E workload, we provide 3σSched with a synthetically
generated distribution instead of the distribution produced by 3σPredict.

We adjust the synthetic distributions in two dimensions, corresponding to an off-center mean
and different variances. The former is realized by artificially shifting the entire distribution by an
amount equal to a selected percent difference between the mean of the distribution and the actual
runtime. The latter is represented by the CoV, which refers to the ratio of standard deviation to the
actual runtime of the job. For each job, the artificial distribution is ∼N (µ = job runtime∗ (1+
shi f t), σ = job runtime∗CoV), where the shift itself is ∼N (µ = shi f t, σ = 0.1).

Fig. 7 shows the results. Comparing point estimates (point) and distribution estimates, we
observe that it is strictly better to use distribution estimates (CoV=x%) than to use point estimates
(point) for scheduling jobs. Even at an artificial shift= 0.0, where≈ 70% of estimates are generally
accurate (within ±10% error), using a distribution yields 2X fewer SLO misses compared to the
point estimates. Hence, even a small proportion of jobs with inaccurate estimates can cause the
scheduler to make mistakes and miss the opportunity to finish more jobs on time. Comprehending
entire distributions enables the scheduler to reason about uncertainty in runtimes.

Furthermore, for small artificial shifts (within ±20%), it is better to have narrower distributions
with a smaller CoV. This is because a wider distribution indicates greater likelihood of runtimes
that are much shorter and much larger than the actual runtime. The scheduler is more likely to
incorrectly make risky decision to start some jobs later than it should and make overly conservative
decisions for other jobs.

However, if the actual runtime is far away from the center of the runtime distribution (larger
artificial shift), wider distributions provide a benefit. As the distribution widens, the scheduler
correctly assigns higher expected utility to scenarios that hedge the risk of runtimes being farther
away from the mean. On the other hand, narrower distributions suffer more as the artificial shift
deviates further from zero. The likelihood of the job running for the actual runtime decreases
significantly, and causes the scheduler to discount the placement options that hedge the associated
risks.

25

B.4 Sensitivity analyses
Sensitivity to deadline slack. Fig. 6 shows performance as a function of deadline slack. We
make two additional observations. First, smaller slack makes it harder to meet SLOs across all
policies, due to increased contention for cluster space-time, leading to higher SLO miss rates.
Second, best effort goodput decreases for all systems, but for different reasons. As slack increases,
PointPerfEst sees more wiggle room for placement and tries (and completes) more difficult larger
SLO jobs. Since the schedule is optimally packed, it needs to bump best effort jobs in order to
schedule more SLO jobs. BE goodput of PointRealEst shows similar trends; PointRealEst tries
more over-estimated jobs, since increasing slack reduces the number of seemingly impossible jobs.
3Sigma, on the other hand, was already trying most completable overestimated jobs, so it sees the
smallest decrease in BE goodput. More of the SLO jobs succeed though.

5 10 25 50
Observed Instances

0

5

10

15

20

25

30

35

40

S
LO

 M
is

s(
%

)

Point - PerfEst

3Sigma

Point - RealEst

Prio

(a) SLO Miss-rate

5 10 25 50
Observed Instances

0

100

200

300

400

500

600

B
E
 G

o
o
d
p
u
t(

M
/H

r)

Point - PerfEst

3Sigma

Point - RealEst

Prio

(b) BE Goodput

5 10 25 50
Observed Instances

0

100

200

300

400

500

600

B
E
 L

a
te

n
cy

(s
)

Point - PerfEst

3Sigma

Point - RealEst

Prio

(c) BE latency
Figure 9: 3Sigma outperforms others on SLO Misses for a range of runtime variability. 3Sigma matches
PointPerfEst in terms of SLO misses at the sacrifice of Best Effort goodput. Cluster:SC256. Workload:E2E-
SAMPLE-n where n ∈ [5,10,25,50,75,100]

Sensitivity to load. Fig. 8 shows performance as a function of load. As load increases,
we observe an increase in all systems’ SLO miss rates due to increased contention for cluster
resources. The relative effectiveness of PointPerfEstand the three realistic scheduling approaches
is consistent across the range. We observe that as the load increases, all systems increasingly
prioritize SLO jobs, decreasing BE goodput. The gap between the BE goodputs of PointPerfEst
and 3Sigma widens as 3Sigma makes more room for each incoming SLO job to address its
uncertainty about runtimes.

Sensitivity to sample size. Another concern may be: how is the performance of the scheduler
affected by the number of samples observed per feature (user, job names, etc.)? To answer
this question, we used another modified version of the E2E workload where we controlled the
number of samples comprising the distributions used by 3Sigma, drawing those samples from
the original distributions. We also created a version of PointRealEst where the point estimates
were derived from the observed samples. In Fig. 9, we vary the number of samples used from 5
to 100. We observe that increasing the number of samples from 5 to 25 significantly improved
performance (for both schedulers), but by 25 samples, the performance of 3Sigma converges to
the performance of PointPerfEst. 3Sigma outperforms PointRealEstat each point and benefits
more from additional instances, since it uses the distribution rather than just the mean. Naturally,
PointPerfEst and Prio are not affected.

26

B.5 Scalability
This section shows that 3Sigma can handle the additional complexity from distribution-based
scheduling even while managing more than 12500 nodes and a job submission rate comparable to
the heaviest load observed in the Google cluster trace (3668 jobs per hour).

3Sigma requires more CPU time to make decisions than not using runtime estimates (e.g., Prio),
which can affect scheduler scalability. Although previous work [5, 24] has shown that packing
cluster space-time using runtime estimates can be sufficiently efficient for 100s to 1000s of nodes,
3Sigma adds sources of overhead not evaluated in such previous work: (1) latency of 3σPredict at
Job Submission (I/O and computation for looking up the correct group of jobs in the runtime history
database and generating distribution), (2) latency from additional computation (e.g. computing
expected utility and expected resource consumption) to formulate the bin-packing problem, and (3)
increased solver runtime due to increased complexity of the bin-packing problem at 3σSched.

In this experiment, 3Sigma schedules microbenchmark workloads, SCALABILITY-n. Each
workload consists of n jobs per hour for 5 hours. The ratio of tasks to job matches those observed
in the Google cluster trace. The load is set to 0.95. Even under these conditions, the latency of
producing distributions at 3σPredict is negligible (maximum=14ms) compared to the job runtimes
in the trace. 3σPredict maintains minimal state for each group of jobs, so the cost of data retrieval
is low. Similar latency is observed for producing point estimates, since most of the work is the same
(accessing histories and choosing among them).

We also compare the performance of PointRealEst and 3Sigma in Fig. 10. Fig. 10(a) depicts
the runtime of each scheduling cycle, including generation of scheduling options, evaluation,
formulation of the optimization problem, and execution of the solver. Fig. 10(b) reports the runtime
of the solver. For both systems, the solver execution is a non-trivial fraction of the scheduling
cycle runtime. We observe that distribution-based scheduling also results in a moderate increase in
worst-case solver time. As noted in §5.3, distribution-based scheduling induces a moderate increase
in the number of constraint terms but does not change the number of decision variables. Also note
that the actual impact on the solver runtime is upper-bounded by a a solver timeout parameter, so
the impact of solving on scheduling latency is bounded.

2000 3000 4000
Job Submission Per Hour

0

1

2

3

4

Ru
nt

im
e(

s)

Dist Point

(a) Scheduling Cycle

2000 3000 4000
Job Submission Per Hour

0

1

2

3

4

Ru
nt

im
e(

s)

Dist Point

(b) Solver

Figure 10: 3Sigma scalability as a function of job submission per hour. Cluster: GOOGLE, Workload:
SCALABILITY-n where n ∈ [2000,3000,4000]

27

	1 Introduction
	2 Thesis Statement
	3 Background and Motivation
	3.1 Schedulers relying on information
	3.2 Cluster Workloads
	3.3 Mis-estimate mitigation strategies
	3.4 A case for distribution-based scheduling

	4 Distribution-based Scheduling
	4.1 Valuation of scheduling options
	4.2 Expected resource consumption

	5 3Sigma: a runtime distribution based scheduler
	5.1 Generating runtime distributions
	5.2 Handling imperfect distributions
	5.2.1 Under-estimate handling
	5.2.2 Over-estimate handling
	5.2.3 Adaptive over-estimate handling

	5.3 Scheduling algorithm
	5.3.1 Intuition.
	5.3.2 MILP Formulation
	5.3.3 Preemption
	5.3.4 Scalability

	6 Distribution-based scheduling for resource usage variation
	6.1 Submachine granularity assignment
	6.2 Estimating resource distribution
	6.3 Scheduler that copes with uncertainty in resource and time dimension

	7 Proposed Timeline
	A Experimental Setup
	B Experimental Results
	B.1 End-to-end performance
	B.2 Attribution of benefit
	B.3 Distribution-based scheduling benefits
	B.4 Sensitivity analyses
	B.5 Scalability

